Bortezomib Treatment Produces Nocifensive Behavior and Changes in the Expression of TRPV1, CGRP, and Substance P in the Rat DRG, Spinal Cord, and Sciatic Nerve

نویسندگان

  • M. Quartu
  • V. A. Carozzi
  • S. G. Dorsey
  • M. P. Serra
  • L. Poddighe
  • C. Picci
  • M. Boi
  • T. Melis
  • M. Del Fiacco
  • C. Meregalli
  • A. Chiorazzi
  • C. L. Renn
  • G. Cavaletti
  • P. Marmiroli
چکیده

To investigate neurochemical changes associated with bortezomib-induced painful peripheral neuropathy (PN), we examined the effects of a single-dose intravenous administration of bortezomib and a well-established "chronic" schedule in a rat model of bortezomib-induced PN. The TRPV1 channel and sensory neuropeptides CGRP and substance P (SP) were studied in L4-L5 dorsal root ganglia (DRGs), spinal cord, and sciatic nerve. Behavioral measures, performed at the end of the chronic bortezomib treatment, confirmed a reduction of mechanical nociceptive threshold, whereas no difference occurred in thermal withdrawal latency. Western blot analysis showed a relative increase of TRPV1 in DRG and spinal cord after both acute and chronic bortezomib administration. Reverse transcriptase-polymerase chain reaction revealed a decrease of TRPV1 and CGRP mRNA relative levels after chronic treatment. Immunohistochemistry showed that in the DRGs, TRPV1-, CGRP-, and SP-immunoreactive neurons were mostly small- and medium-sized and the proportion of TRPV1- and CGRP-labeled neurons increased after treatment. A bortezomib-induced increase in density of TRPV1- and CGRP-immunoreactive innervation in the dorsal horn was also observed. Our findings show that bortezomib-treatment selectively affects subsets of DRG neurons likely involved in the processing of nociceptive stimuli and that neurochemical changes may contribute to development and persistence of pain in bortezomib-induced PN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deprenyl changes the expression of Trk-B and P75 NTR receptors in rat after sciatic nerve axotomy

During development many of neurons die by the phenomenon named programmed cell death or apoptosis and this reaction is regulated by neurotrophin (BDNF, NGF, NT3 and NT4/5). These neurotrophins bind to two different classes of transmembrane receptor proteins, the Trks and P75 NTR. Axotomy can induce apoptosis after birth and deprenyl is a an inhibitor of monoamineoxidase type-B and seems to act ...

متن کامل

Deprenyl changes the expression of Trk-B and P75 NTR receptors in rat after sciatic nerve axotomy

During development many of neurons die by the phenomenon named programmed cell death or apoptosis and this reaction is regulated by neurotrophin (BDNF, NGF, NT3 and NT4/5). These neurotrophins bind to two different classes of transmembrane receptor proteins, the Trks and P75 NTR. Axotomy can induce apoptosis after birth and deprenyl is a an inhibitor of monoamineoxidase type-B and seems to act ...

متن کامل

P35: Effect of Hydroalcoholic Extract of Agrimonia eupatoria on Alpha Motoneurons Regeneration of Anterior Spinal Cord after Compression of Sciatic Nerve in Rat

If nerve cells damaged, they cannot be restored by themselves. Agrimonia eupatoria has been used in traditional medicine to heal the wounds and scratch, and dry the scars. Therefore, this herb probably contains compounds with restorative properties. The purpose of this study was to investigate the restorative effect of Agrimonia eupatoria on alpha motor neurons of anterior spinal cord. In this ...

متن کامل

The effect of treatment with BRX-220, a co-inducer of heat shock proteins, on sensory fibers of the rat following peripheral nerve injury.

In this study, we examined the effect BRX-220, a co-inducer of heat shock proteins, in injury-induced peripheral neuropathy. Following sciatic nerve injury in adult rats and treatment with BRX-220, the following features of the sensory system were studied: (a) expression of calcitonin gene-related peptide (CGRP); (b) binding of isolectin B4 (IB4) in dorsal root ganglia (DRG) and spinal cord; (c...

متن کامل

Deprenyl increases synaptophysin and choline acetyltransferase in rat after sciatic nerve axotomy

Neuroprotective effect of deprenyl on motoneurons of spinal cord after axotomy of peripheral nerves such as sciatic has been well established. Deprenyl is an inhibitor of monoamine oxidase type-B (MAO-B). The main function of this agent is the release of neurotransmitters from pre-synaptic terminals. Acetylcholine is a neurotransmitter that is synthesized by choline acetyltransferase (ChAT) and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014